Mycobacterium bovis BCG response regulator essential for hypoxic dormancy.

نویسندگان

  • Calvin Boon
  • Thomas Dick
چکیده

Obligately aerobic tubercle bacilli are capable of adapting to survive hypoxia by developing into a nonreplicating or dormant form. Dormant bacilli maintain viability for extended periods. Furthermore, they are resistant to antimycobacterials, and hence, dormancy might play a role in the persistence of tuberculosis infection despite prolonged chemotherapy. Previously, we have grown dormant Mycobacterium bovis BCG in an oxygen-limited Wayne culture system and subjected the bacilli to proteome analysis. This work revealed the upregulation of the response regulator Rv3133c and three other polypeptides (alpha-crystallin and two "conserved hypothetical" proteins) upon entry into dormancy. Here, we replaced the coding sequence of the response regulator with a kanamycin resistance cassette and demonstrated that the loss-of-function mutant died after oxygen starvation-induced termination of growth. Thus, the disruption of this dormancy-induced transcription factor resulted in loss of the ability of BCG to adapt to survival of hypoxia. Two-dimensional gel electrophoresis of protein extracts from the gene-disrupted strain showed that the genetic loss of the response regulator caused loss of the induction of the other three dormancy proteins. Thus, the upregulation of these dormancy proteins requires the response regulator. Based on these two functions, dormancy survival and regulation, we named the Rv3133c gene dosR for dormancy survival regulator. Our results provide conclusive evidence that DosR is a key regulator in the oxygen starvation-induced mycobacterial dormancy response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteins of Mycobacterium bovis BCG induced in the Wayne dormancy model.

Oxygen starvation triggers the shiftdown of the obligate aerobe Mycobacterium bovis BCG to a state of dormancy. Two-dimensional electrophoresis showed a drastic up-regulation of the alpha-crystallin homolog, the putative response regulator Rv3133c, and the two conserved hypothetical proteins Rv2623 and Rv2626c in dormant bacilli.

متن کامل

Mycobacterium bovis BCG vaccine strains lack narK2 and narX induction and exhibit altered phenotypes during dormancy.

Mycobacterium tuberculosis is the causative agent of tuberculosis, a disease that affects one-third of the world's population. The sole extant vaccine for tuberculosis is the live attenuated Mycobacterium bovis bacillus Calmette-Guerin (BCG). We examined 13 representative BCG strains from around the world to ascertain their ability to express DosR-regulated dormancy antigens. These are known to...

متن کامل

Differential Expression of Proteins of Mycobacterium bovis BCG during Adaptation to Anaerobic Non Replicating Persistence

The adaptive mechanisms involved in the establishment of a latent infection with Mycobacterium tuberculosis are not fully understood, but hypoxic condition in the central part of the granulomas is generally believed to be the environment encountered by the pathogen during persistence. In the present study, we followed the adaptive process of Mycobacterium bovis BCG during transition in vitro fr...

متن کامل

Interaction of DevR with multiple binding sites synergistically activates divergent transcription of narK2-Rv1738 genes in Mycobacterium tuberculosis.

Under hypoxic conditions or upon exposure to low concentrations of nitric oxide, DevR transcriptional regulator mediates the activation of approximately 50 genes that are believed to assist in dormancy development in Mycobacterium tuberculosis. Most of the strongly induced genes are characterized by the presence of one to four copies of a Dev box-like sequence at an upstream location. Among the...

متن کامل

An essential two-component signal transduction system in Mycobacterium tuberculosis.

The bacterial two-component signal transduction systems regulate adaptation processes and are likely to play a role in Mycobacterium tuberculosis physiology and pathogenesis. The previous initial characterization of an M. tuberculosis response regulator from one of these systems, mtrA-mtrB, suggested its transcriptional activation during infection of phagocytic cells. In this work, we further c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 24  شماره 

صفحات  -

تاریخ انتشار 2002